SHORT COMMUNICATION

VENTILATION FREQUENCIES AND STROKE VOLUMES IN ACUTE HYPOXIA IN OCTOPUS

BY M. J. WELLS AND J. WELLS

Zoology Laboratory, University of Cambridge, U.K. and the Laboratoire Arago, Banyuls, France

Accepted 25 March 1985

Octopus can regulate its oxygen uptake down to a Po$_2$ of 70 mmHg, and in some instances well beyond this (Borer & Lane, 1971; Maginnis & Wells, 1969; Wells & Wells, 1983). In part, this capacity depends upon a rise in the pH of the blood, which increases the oxygen affinity of the animal’s haemocyanin as the external Po$_2$ falls (Houlihan, Innes, Wells & Wells, 1982). The fact that the blood can remain saturated down to quite low Po$_2$ values means that the animal does not need to circulate any more blood to keep the tissues supplied in an environment that is becoming depleted of oxygen. But it does have to pass more water through the gills. The percentage of the available oxygen that is extracted from the ventilatory stream sometimes increases a little as the inhalant Po$_2$ (Pio$_2$) falls; but the volume removed (% × content) plainly does not (Wells & Wells, 1982). To maintain the same total uptake the animal must increase the ventilation frequency and/or the ventilation stroke volume. The purpose of the present work was to establish what happens.

Ten Octopus vulgaris (eight males and two females), from 666 to 1687 g, were used. The animals were kept at Banyuls during September 1984, at temperatures between 21 and 24°C. Temperature change during any one experiment was not greater than 1°C. The animals were undamaged and fed regularly on crabs. Each octopus was anaesthetized in 2-5 % ethanol and had a 3-mm o.d. ‘Portex’ cannula sewn to the mantle adductor, just below the funnel in the midline of the animal. The cannula was led out through the muscle at the back of the mantle, as described in Wells & Wells (1982). The operation was very quick (<5 min) and could be carried out as soon as ventilatory movements ceased. Recovery, aided by passing a stream of sea water over the gills, was rapid. Tests were carried out not less than 1 h after breathing had begun again. Previous studies (Wells, O’Dor, Mangold & Wells, 1983; Wells & Wells, 1984) and work to be reported (D. F. Houlihan, G. Duthie, P. J. S. Smith, M. J. Wells & J. Wells, in preparation) have indicated that the maximum O$_2$ debt that an octopus can sustain (about 20 ml kg$^{-1}$, following exhausting exercise or prolonged anaesthesia) is paid off.

Key words: Ventilation, hypoxia, Octopus.
within 2 h. The cannula sampling exhalant P_{O_2} (Pe_{O_2}) led to a Perspex chamber surrounding the electrode of an EIL 7130 dissolved oxygen meter. The water in the chamber was kept stirred by a paddle activated by a magnetic stirrer. The outflow was led to a beaker with a floating lid to minimize the free surface, and this water, collected at a rate of about 30 ml min$^{-1}$, was periodically returned to the respirometer. The respirometer itself has been described in Wells, O'Dor, Mangold & Wells (1983). The oxygen tension in the respirometer (Pi_{O_2}) was measured by circulating the water past an EIL 15A oxygen probe. The circulation pump, with an output of several 1 min$^{-1}$ also served to keep the tank water stirred.

The two oxygen electrodes were checked and matched to give the same output in saturated sea water before each experiment. Experimental runs normally lasted about 75 min, during which the animal would reduce the Pi_{O_2} from about 140 to about 40 mmHg.

Ventilation frequency was observed directly, mantle movements being counted through the transparent ceiling of the respirometer while remaining, as far as possible, out of sight of the animal.

It was thus possible to record oxygen uptake, oxygen extraction from the ventilatory system, and ventilation frequency at the same time. Ventilation stroke volume ($V_{s,R}$ in ml) was calculated as:

$$V_{s,R} = \frac{I_{O_2} - E_{O_2}}{V_{O_2} \times f_R} \times 1000,$$

where I_{O_2} and E_{O_2} are the O_2 contents (ml$^{-1}$) of the tank and exhalant streams respectively, V_{O_2} is the animal's oxygen uptake in ml and f_R is the number of ventilation cycles. V_{O_2} was measured over 10-min periods, with values for I_{O_2}, E_{O_2} and f_R taken in the middle of each 10-min period.

The results obtained are summarized in Table 1. Oxygen uptake and percent extraction from the ventilatory stream both declined a little as the Pi_{O_2} fell (the latter by about 20 % for a three-fold decline in Pi_{O_2}). Ventilation frequency and ventilation minute volume both increased. Ventilation stroke volume changed very greatly compared with ventilation frequency. The former increased by up to 400 %, the latter by a maximum of 50 % (average figures were 161 % and 32 %).

If the animals are ranked according to their capacity to maintain their O_2 uptake as the Pi_{O_2} fell (columns 3–5 in Table 1) and these rankings are compared with their capacity to increase ventilation frequency (columns 9, 10) and stroke volume (13, 14), it is immediately obvious that it is the stroke volume, and not the frequency, that matters so far as O_2 uptake is concerned (Spearman Rank Correlation, $rs=0.042$ for frequency, not significant and 0.0756, $P<0.01$, for stroke volume).

The lack of correlation between O_2 uptake and ventilation frequency is in keeping with earlier results (Boyle, 1983; Wells & Wells, 1982) which have shown that frequency tends to increase with behaviour such as locomotion, defaecation, defence and arousal, activities that are not always correlated with immediate changes in O_2 uptake; percent extraction normally falls on these occasions (Wells
<table>
<thead>
<tr>
<th></th>
<th>Weight (g) and sex</th>
<th>140</th>
<th>95</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y4</td>
<td>826♂</td>
<td>1.2</td>
<td>1.3</td>
<td>1.0</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td>24</td>
<td>34</td>
<td></td>
<td>420</td>
<td>1664</td>
<td>2.1</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5</td>
<td>666♀</td>
<td>2.1</td>
<td>1.6</td>
<td>0.8</td>
<td>42</td>
<td>40</td>
<td>43</td>
<td>30</td>
<td>38</td>
<td></td>
<td>689</td>
<td>1050</td>
<td>2.9</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y12</td>
<td>1380♂</td>
<td>1.7</td>
<td>1.8</td>
<td>1.0</td>
<td>28</td>
<td>25</td>
<td>23</td>
<td>26</td>
<td>34</td>
<td></td>
<td>2342</td>
<td>4011</td>
<td>5.3</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y14</td>
<td>1687♂</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>36</td>
<td>33</td>
<td>37</td>
<td>32</td>
<td>34</td>
<td></td>
<td>1594</td>
<td>2961</td>
<td>2.7</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y16</td>
<td>1110♂</td>
<td>1.6</td>
<td>1.0</td>
<td>0.9</td>
<td>44</td>
<td>53</td>
<td>63</td>
<td>22</td>
<td>30</td>
<td></td>
<td>718</td>
<td>1914</td>
<td>2.7</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y17</td>
<td>1040♂</td>
<td>1.8</td>
<td>1.2</td>
<td>1.0</td>
<td>51</td>
<td>33</td>
<td>33</td>
<td>24</td>
<td>34</td>
<td></td>
<td>1043</td>
<td>1919</td>
<td>4.1</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y18</td>
<td>947♂</td>
<td>0.8</td>
<td>1.3</td>
<td>1.0</td>
<td>64</td>
<td>60</td>
<td>40</td>
<td>18</td>
<td>26</td>
<td></td>
<td>260</td>
<td>1717</td>
<td>1.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y19</td>
<td>628♂</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>62</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>30</td>
<td></td>
<td>272</td>
<td>1325</td>
<td>2.1</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y20</td>
<td>840♂</td>
<td>1.5</td>
<td>1.0</td>
<td>0.6</td>
<td>32</td>
<td>30</td>
<td>23</td>
<td>20</td>
<td>28</td>
<td></td>
<td>739</td>
<td>1409</td>
<td>3.6</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y29</td>
<td>1210♂</td>
<td>1.6</td>
<td>1.2</td>
<td>0.8</td>
<td>53</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>30</td>
<td></td>
<td>1003</td>
<td>2410</td>
<td>3.4</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means ± S.E. 46 ± 4 40 ± 4 38 ± 4 3.0 ± 3.6 8 ± 0.4 32 ± 4 161 ± 39

*Decreased.
†Ignoring periods of activity.
& Wells, 1982). Frequency generally increases as P_{O_2} falls. It rose by an average of 32% in the present series. Borer & Lane (1971), working with Octopus briareus, found that frequency rose by 4 cycles min$^{-1}$ for each 12-mmHg drop in P_{O_2} below 85 mmHg. But the variability introduced by other factors swamps the relationship between frequency and the capacity to regulate.

There has been one previous attempt to measure ventilation volumes in Octopus vulgaris. Winterstein (1925) attached the exhalant funnel to the finger of a rubber glove and thence, via a condom, to a collecting vessel outside the respirometer. He found ventilation volumes ranging from 100 to 1500 ml min$^{-1}$ as the P_{O_2} fell in animals from the same size range as those considered in Table 1. Johansen (1965) used a similar technique to examine ventilation in the much larger Octopus dofleini. The difficulty about direct collection is that it is liable to impede flow, now known to be driven by very small pressure gradients, in the region of 0·5 cmH$_2$O (~0·05 kPa) (Wells & Smith, 1985). The lack of obstruction achieved by using an indirect method presumably accounts for the considerably larger volumes (260 to 4000 ml min$^{-1}$) that we have now recorded.

REFERENCES

