




















Dynamic analysis of swimming 239
completely collapsed. The body mass per unit length mt,(x) and the lateral

ded mass per unit length ma(x) were calculated by:

ma = iwh2 '

where b is the local body width, hi the local body height excluding fins and h2
including fins. Both formulae are valid for elliptical sections. Lighthill (1970) showed
that deviations from the calculated ma values are likely to be small. After b, hi, Ii2 were
determined at some 18 points, smooth functions mt,(x) and rria(x) were obtained by
interpolation with cubic splines.

Some relevant quantities are:

Height of tail fin at trailing edge
Added mass at trailing edge
Body volume
Wetted area
Shape parameter, see (45)
Reynolds number (Re)

0-24 [L]
ma(L) =
mf =

A w =
s =
between 2 X

0-0452 [L2]
0-0113 [ i /
0-401 [L2]
0-0564
10s and 8 X

We may well pose the question: how closely does a saithe resemble a slender body?
One may think of slender-body theory as an approximate theory whose resolving
power is limited to details in space which have about the size of the cross-sectional
dimensions of the 'slender' body. In our case that means roughly one-quarter of the
fish length, which is not very good. (For eel it would be about one-tenth, which is
much better.) In slender-body theory the mean thrust and the mean total power
depend only on what happens at the tail end, but the theory implies that what happens
just ahead of the tail end is not very different. Here 'just ahead' may mean an area as
large as the whole fish tail in saithe. However, the height, for instance, varies strongly
along the tail. From this it is clear that the numerical results presented in this paper
should be considered as approximate estimates rather than as precise quantitative
predictions.

It is quite likely that slender-body theory over-estimates the hydrodynamic forces,
especially at the tail. Firstly, as pointed out by Lighthill (1970), the effective lateral
added mass is smaller if the body wave length is not very much (say, at least five times)
greater than the body height. Secondly, the tail region of saithe is not slender, strictly
speaking. The tailfin roughly resembles a triangular wing of aspect ratio 4 (Fig. 3A).
For such a wing in steady flow the lift is over-predicted by a factor of 1-8 by slender-
body (or rather slender-wing) theory (Lawrence, 1951). The only remedy would be
to employ some kind of unsteady lifting-surface theory, but that would involve
tremendous complications in comparison with Lighthill's (1960) elegant slender-body
theory.

RESULTS AND DISCUSSION

The third and fifth frequencies (j = 3, 5 in the formulae) each contributed only
ibout 1 % to the power and the thrust (Fig. 6). Therefore, we shall deal only with the
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fcst frequency (j = 1). Table 1 lists some results for the 13 sequences and also for the
liverage' saithe obtained by averaging the Fourier coefficients z\ and bj from the 13
sequences (see Videler & Hess, 1984).

Obviously, the stiff-body motion added as a recoil correction was considerable in
all cases. Let us first look at the situation before the recoil correction was applied. The
mean total power P and the mean thrust 6 have been computed according to (34) and
(33), and from these follow the thrust coefficient Or (44) and the Froude efficiency
T} (32). If we leave the four decelerating cases out, r} varied between 0-52 and 0-72.
For 'average' saithe T] = 0-63. These values are lower than the estimates made in the
preceding paper (Videler & Hess, 1984). There we looked at the motion of the
posterior part, in particular the quantities hi'(x)/hi(x) and Ti(x). In the present
calculations the trailing edge values were used, which turn out to differ somewhat
from the mean values over, say, the last 10% of the fish length. Although the latter
calculations were carried out with greater precision, we believe the former estimates
to be more realistic.

For a saithe moving with the U and h(x,t) as analysed from the film sequences, the
hydrodynamic forces computed according to slender-body theory would be such that
the end conditions (6), or (26), could not be satisfied. Theoretically, the fish could
only move that way if additional external lateral forces were to act at the nose and tail

Fig. 3. (A) Shape of swimming saithe, lateral and dorsal views. (B) Distribution of body mass per
unit length mb(x) (dashed curve) and lateral added mass per unit length m,(x) (drawn curve). (Unit:
pL2.)
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ends. We computed these virtual forces. In all cases the external force at the tail enM
counteracted the computed hydrodynamic force, whereas the additional force at th?
nose end was much smaller. Let us take the case of 'average' saithe. The virtual force on
the nose end had an amplitude 0-002 (pL4T~2) and reached its maximum at t = 0-33
(T). The virtual lateral force on the tail end had an amplitude 0 • 0063, and its maximum
occurred at t = 0-90. Now, the lateral hydrodynamic force acting on the fish between
x = 0-95 and x = 100 had an amplitude 00061 and reached its maximum at t = 0-36,
that is 0-54 T earlier than the virtual force. Thus the computed hydrodynamic force on
the last 5 % of the fish length was cancelled for a great part by the virtual force. This
clearly shows that the saithe can only carry out its observed movement if the
hydrodynamic force on the tail is much smaller in reality than as computed.

The stiff-body motion added as recoil correction is indicated in Table 1 by the
values of its amplitude and phase at the nose and tail ends. Fig. 4 provides a com-
parison between the lateral motion before and after recoil correction for 'average'
saithe. The amplitudes at nose and tail ends were hardly affected, but in between the
'corrected' amplitude was higher. The most significant change concerned the tail
region, where hi'(x) was much reduced after the correction. The 'corrected' phase
function Ti(x) equalled -0-043 at the tailing edge rather than zero. The wave speed
V (= 1/TI') was only marginally increased in the tail region, but its overall value was
higher. Before recoil correction we have V = 1-04, U/V = 0-82, and after recoil cor-
rection V = 1-26, U/V = 0-68 over the posterior half of the fish.

014

012 -

-1-4

Fig. 4. Lateral motion of 'average' saithe before recoil correction (drawn curves) and after recoil
correction (dashed curves). First frequency contribution only. Nose is at x = 0, tail point at x = 1.
Left: amplitude functions h^x) (unit: L). Right: phase functions r,(x) (unit: T).
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Values for P, 6, Or and r\ after recoil correction are listed in Table 1. From the

Observed acceleration C T ~ CD follows according to (46). This leads to the drag co-
efficient values in the last column of Table 1. The Froude efficiency r) ranged from
0-65 to 0*84, or, if the four decelerating cases are left out, from 0-79 to 0-84. CT varied
between 0-001 for the decelerating S13 to 0-027 for the rather strongly accelerating
S5. CD varied between 0-003 and 0014. For 'average' saithe we find CT = 0-009 and,
as the average value for CT—CD = 0-002, we estimate CD = 0-007. The mean total
power P for 'average' saithe was 0-0014 (pL5T~3), which corresponds to about
0-7 W kg"1 body weight. (For SS it is about 3-5 W kg"1.)

The calculated thrust 6 fluctuated during each half-period between zero and
approximately twice its average value 6. For 'average' saithe 6 = 0-0013 ± 0-0011. If
the drag on the fish were constant, such thrust fluctuations would cause oscillations
of the forward speed about its mean value U. According to (46) the fluctuations in U
would have an amplitude:

^ (48)

This gives rise to relative speed fluctuations with amplitude:

AU _ A C T U

U scoL '
(49)

where A Or is the amplitude of the fluctuations in the thrust coefficient. For 'average'
saithe (49) yielded about 2 %, and the maximum thrust occurred at t — —0-24 which
was nearly simultaneous with the maximum bending moment, roughly when the tail
point passes the plane z = 0. These fluctuations are somewhat stronger than those
observed in the preceding paper (Videler & Hess, 1984). In the accelerating case S5
we find AU/U — 5 %, which agrees with the observed value. The computed instant
of maximum thrust was at t = —0-28, whereas the kinematic data yielded t = —0-20.

Fig. 5 shows the amplitude Mi(x) and the phase function jUi(x) of the bending
moment M(x,t) for 'average' saithe. The bending moment was strongest in the central
part of the fish body. The phase curve was nearly horizontal: fii(x) — —025. This is
by far the most striking result: the bending moment did not travel from head to tail
as a wave but it reached its maximum value nearly simultaneously all along the body!
The muscles on the right side of the body exerted their maximum contraction force
at about the instant when the tail end, in its sweep from left to right, had reached the
plane of symmetry (z = 0).

Fig. 6 shows the mean differential bending power Pi(x) and the mean differential
power imparted to the water P2(x). Pi was almost zero in the anterior part because the
fish body hardly bends there, it reached a maximum in the central part around x = 0-7,
and it was negative in the tail, which contains no muscles. Fig. 6 clearly shows that
the power (Pi) was generated in the region 0-4 < x < 0-9 and spent on the water (P2)
in the tail region x>0-85. Considering the fish as a hydrodynamic propulsion
machine: the central part of the fish body contains the motor and the tail serves as the
propeller.

The fluctuation in the differential bending power Pi(x,t) are not shown, but, as
^plained above, they were very strong. At x = 0-65, where the bending moment was
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Fig. 5. Lateral body curvature (dashed curves) and lateral bending moment (drawn curves) for
'average' saithe. First frequency contribution only. Left: amplitude functions fi(x) (unit: L"1) and
M|(x) X 104 (unit: pL5T~z). Right: phase functions ai(x) + 0S and fii(x) (unit: T). Because the
body curvature found for x < 0-2 is due to noise in the data rather than to real bending, the dashed
phase curve has no physical meaning in this region.

greatest, Pi fluctuated between zero and twice its mean value and at most other places
the power became negative during part of each period. This implies that most of the
lateral fish muscles used in swimming are periodically stretched while exerting a
contracting force.

How accurate are the computed results presented here? Since the hydrodynamic
forces are over-predicted (at least on the tail), the bending moment M, the differential
bending power Pi, and the thrust 0are likely to be over-predicted as well. We found,
however, strong indications that the standing-wave character of the bending moment
is not a spurious result but a real phenomenon. We have tried several ways to reduce
the hydrodynamic force on the tail. We worked with a lower 'effective' tail height, or
decreased the lateral added mass ma as suggested by Lighthill's (1970) Fig. 2. Also we
have employed a different curvature function f(x,t), which has its amplitude fi(x)
increasing towards the trailing edge instead of decreasing. All these methods yield a
reduced hydrodynamic tail force, a much smaller recoil correction and smaller values
forMi(x), Pi(x), 6, CT and hence CD . But the curves for /ii(x) remain approximately
horizontal (with the possible exception of the last 10% of the fish length). None of
these methods can be firmly justified theoretically, but their results firstly confirm our
main finding that the bending moment does not move along the body as a running
wave, and secondly indicate that the drag coefficient for saithe probably is CD — 0-00 j |
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Fig. 6. Distribution of mean bending power per unit length Pi (x) and mean power spent on the water
per unit length ?2(x) for 'average' saithe. (Unit: pL4T ). Drawn curve: Pi(x)x lCr, first frequency
contribution only. Dashed curve: P2(x)XlO3, first frequency contribution only. Dotted curves:
Pi(x) X103 and Pz(x)X103, sum of first, third and fifth frequency contributions.

This is much lower than the high drag coefficient obtained from computed thrust by
Lighthill (1971) for Leuciscus. For saithe we found no evidence to support his view
'that the viscous drag on the fish while it is swimming must for some reason be many
ti mes greater than that which would be associated with gliding motion'. We have not
analysed film sequences of gliding saithe without lateral motion, which could have
provided experimental values for CD . For gliding cod (Gadus morhua), however,
Videler (1981) found CD = 0-015, 0-011, 0-011 for one specimen in three gliding
Sequences.
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Our findings are supported by preliminary results of a similar analysis of the swim|
ming motion of eel {Anguilla anguilla). Hydrodynamically an eel behaves as a slendeii
body to a good approximation. Indeed, the recoil corrections required for eel are
much smaller than for saithe. The bending moment has the same character, although
the phase function jUi(x) in eel is not quite so constant as in saithe. The mean differen-
tial bending power Pi has roughly the same shape as in saithe, but the negative peak
in the tail region is relatively more pronounced in eel. All these results are qualitatively
similar to those presented here for saithe.

In deriving the major result, the 'standing wave' character of the bending moment,
we started from a running wave of body curvature. And indeed, the swimming
strategy of a fish might be to send waves of curvature along its body from head to tail.
However, our findings indicate that a fish may well use the strategy of exerting
bending forces simultaneously throughout its body, alternately using the muscles on
the left side and on the right side. The running wave in its body shape is then the result
of the interaction with the water flow. If this hypothesis is correct, the running wave
should be absent if a fish starts from stand-still in water or moves in air, provided the
fish produces the same muscle force. Our view is supported by Hertel's (1963) Fig.
169 of a trout starting and swimming, and also by Fig. 2 of Weihs (1973) of a trout
accelerating from stand-still.

The use of lateral muscles in swimming
The results of our dynamic analysis provide new insight into the function of the

lateral muscles for swimming. We shall first give a short description of the relevant
structures of saithe and then discuss the implications of our findings with respect to
muscle function.

Mechanically important parts of the locomotory apparatus used for continuous
swimming include the vertical septum, and left and right lateral muscles, surrounded
by the skin and the tailblade. The anatomy of these structures closely resembles that
for cod, which is described by Wardle & Videler (1980) and Videler (1981). The
vertical septum between the back of the head and the tailblade divides the body into
two lateral halves. It is a sheet of collagenous fibres supported by the vertebral
column. Mechanically the vertebral column can be regarded as an inextensible and
incompressible flexible rod, easily bent in the horizontal plane. The connecting
tissues between the vertebrae give the column self-restoring elastic properties (Sym-
mons, 1979). The lateral muscles are metamerically arranged in myotomes separated
by myosepts, both structures with a complicated geometry. The muscle fibres are
attached to the myosepts and run approximately in the direction of the longitudinal
body axis. Myosepts are attached to the vertical septum and at certain places to the
skin. There is a thin layer of red aerobic muscle fibres on the outside of the myotomes
just under the skin. The bulk of muscle fibres is white and works anaerobically. The
lateral muscles are also firmly attached to the head and on the other end of the fish to
the fin ray heads of the tailblade. From just behind the head (at x — 0-2) to the position
of the anus (at x = 0-45) the ventral part of the fish contains the abdominal cavity. A
thin layer of lateral muscles supported by ribs surrounds this cavity, and the lateral
bending is restricted in this region. From the anus to the caudal end of the body the
myotomes are bilaterally and dorsoventrally symmetrical.
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The skin is a strong structure of layers of collagenous fibres in criss-cross arrange-

ment (Videler, 1975). It is attached to the head and to the vertical septum along the
dorsal and ventral rim and it inserts firmly on to the fin ray heads of the tailblade. The
structure of the joints between the fin rays of the tailfin and the caudal peduncle allows
the fish to keep the bending properties of the tailblade under muscular control. Details
were given by McCutchen (1970) and Videler (1977, 1981). The curvature of the
tailblade will be the result of elastic properties of the fin rays, controlled by intrinsic
musculature in the peduncle and by lateral musculature via the skin, in interaction
with bending forces exerted by the water.

The body curvature is connected with variations in length of the muscle fibres on
either side of the septum. In our frame of reference, a positive curvature means that
the fibres on the right side are shorter than their resting length, and those on the left
side longer; for negative curvature it is the other way around. A positive bending
moment implies that the muscles on the right side exert a contraction force and those
on the left side are passive or exert a smaller contraction force. We simplify our line
of reasoning by making the assumption that all the contraction forces are exerted by
fibres lying at a distance from the septum d(x) = ib(x) where b is the lateral thickness.
This is approximately where the red muscle fibres are situated, and the simplified
situation may not be too unrealistic during swimming at cruising speeds when most
of the bending moment is generated by the red muscles. However, our assumption
mainly serves as an instructive device.

The relative length change A/// of the chosen fibres on the right side of the fish
follows from the curvature h":

Ad(x,t) = - y = h"(x,t)d(x), (50)

where Ad is the relative shortening of the fibres. On the left side of the fish A/// has
the opposite sign. If the bending moment is generated by forces in the chosen fibres
then the force Fa(x,t) follows from

Fd(x,t) = M(x,t)/d(x). (51)

If M is positive then the contraction force Fd is exerted by the fibres on the right side,
if M is negative then the contraction force — Fd is exerted by the left-side muscles. The
power produced by the hypothetical muscle fibres per unit length is given by:

Fd(x,t)|-Ad(x,t) = M(x,t)^-h"(x,t) = Pi(x,t). (52)
ot ot

In Fig. 7 the functions Fd , Ad and -̂ -Ad are plotted as a function of time during one
ot

period for several cross sections along the fish body: x = 0-1(0*1)0-9. At the nose and
tail points (x = 0, x = 1) both Fd and Ad vanish. The relative fibre length shortening
Ad(x,t) is represented by the dashed curves. The extreme values reached are plus and
minus 6 %. In the tail region (x = 0-9) the curvature is large (Fig. 5) but the body
thickness is small, and Ad varies between plus and minus 4%. The curve at x = 0 1
is probably caused by noise in the kinematic data, since the fish's head is rigid. The

•entraction force Fd(x,t) is represented by the drawn curves. It does not become very
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Fig. 7. Contraction force, relative length change and contraction speed in outer fibres (see main text
for explanation) during one complete period at nine different sections of 'average' saithe. First
frequency contribution only. Numbers at left indicate x-positions of sections. At x = 0 (nose) and
x = 1 (tailpoint) all curves vanish. Drawn curves: contraction force in outer fibres, if positive then on
the right side, if negative then on the left side. One vertical division equals 002pL 4 T~ z . Dashed
curves: relative shortening of outer fibres, if positive then the right-side fibres are shortened and the
left-side fibres are lengthened. One vertical division equals 0-02 ( = 2 % length change). Dotted
curves: contraction speed (that is the rate of change of relative shortening), if positive then the right-
side fibres shorten. One vertical division equals 0*1 T"1. The bending power P|(x,t) at each section
is obtained by multiplying the drawn curve by the dotted curve.
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knall in the tail region like the bending moment does, because d(x) is very small here.
" Let us now look at what happens in the region where the amplitude Mi(x) and also
the mean differential bending power Pi(x) are maximal: at x = 0-6 or x = 0-7. Be-
tween the instants t = 0-5 and t = 1, Fd (drawn curves) is positive and the right-side
fibres exert a contraction force. The right-side fibres shorten (see dashed curves)
and reach their neutral length more or less when Fd is maximal. The contraction
speed (stippled curves) reaches its maximum nearly at the same instant. Hence, the
contraction force and the contraction speed have nearly the same phase. The power
output (determined by the product of stippled curve and solid curve) is positive
during almost the complete half period. Between t = 0 and t = 0*5, Fd is negative,
which means that the left-side fibres exert a positive contraction force — Fd . The right-
side fibres lengthen (dashed curve falls), hence the left-side fibres contract. The
drawn curve and the stippled curve also have the same sign during most of this half
period. Therefore the power output is nearly always positive. At x = 0*6, Pi(x,t) is
negative only for 0-45 < t < 0-50 and 0-95 < x < 1-00.

In the tail region the situation is completely different. Take the section at x = 0-9.
For 0-53 < t < 1-03, Fd(x,t) is positive, but the right-side fibres first lengthen and then
shorten. The time intervals with positive power output and with negative power
output are equally important. The mean differential power output Pi(x) nearly
vanishes here. This part of the fish acts very much like an elastic element; the bending
moment is greatest when the right side is stretched maximally. This behaviour agrees
with the fact that the tail region does not contain muscles.

The opposite situation (resembling 'negative elasticity') is found at x = 0-4. Here
the bending moment is greatest when the right side is shortened maximally. The
drawn curve and the stippled curve have the same sign during about half of the period,
and the mean power output nearly vanishes (Fig. 6).

The sections at x = 0-5 and x = 0-8 are intermediate cases. At x = 0*8, the contrac-
tion speed lags behind the contraction force, and at x = 0-4, it runs ahead of the
contraction force. When the right side at x = 0-8 begins to exert a contraction force
(t = 0*5) then the right-side fibres first go on lengthening (stippled curve is negative)
and only at t = 0-65 do they begin to shorten.

Our analysis indicates that the muscles at x = 0-65 are used most efficiently with
regard to energy output, contraction force and contraction speed being in phase. At
cross sections such as those at x = 0-5 and x = 0-8 there is also a considerable contrac-
tion force, but it is not in phase with the contraction speed. At x = 0-4 and x = 0-9 the
mean power output nearly vanishes.

Fig. 7 clearly shows how the running wave of body deformation together with the
standing wave of the bending moment cause a phase difference between contraction
speed and contraction force which varies systematically along the body from head to
tail. Roughly speaking, when the muscles exert a maximum contraction force
(t = 0-75 for the right side and t = 0-25 for the left side) then the muscle fibres in the
muscular part of the tail from just behind the abdominal cavity to about half-way to
the last unpaired fins (0-5 < x < 0-7) are close to their neutral length and are shorten-
ing at maximum speed. In the anterior part, around the abdominal cavity
0*3 < x < 0-5), the fibres are maximally shortened at about that instant. In the caudal
•tduncle (0-8 < x < 0-9) the maximum force is generated just after the fibres are



250 F. HESS AND J. J. VIDELER

maximally stretched. In this region a substantial part of the bending moment
probably due to elastic structures. Indeed, there are no lateral muscles in the
beyond x = O9. Fig. 7 confirms that the section at x = 0-9 shows a purely elastic
behaviour.

The systematic differences in the use of lateral muscles along the body lead one to
expect physiological or morphological adaptations to the different ways of contrac-
tion. There are no experimental indications as yet of such physiological differences
between muscle fibres. The shape of the myotomes varies along the body but it is still
not clear how this is related to our results.

Our analysis predicts that the muscle fibres on one side of the fish are simultaneous-
ly active. Consequently we expect myograms to occur simultaneously all along one
side of the body. Such patterns have been found experimentally, and indeed Blight
(1977) suggests that the running waves of lateral bending can be produced by 'alterna-
tions of tension development from side to side'. Blight (1976) finds instantaneous
myograms along one side of swimming palmate newt larvae (Triturus helveticus) and
in the same paper presents myogram patterns along the body of a swimming tench
{Tinea tinea). His Fig. 4 indicates that the maximum muscle activity along the right
side of the body occurs when the tail tip crosses the plane of symmetry from left to
right, which agrees with our results. There is a small time delay between the muscle
activity in the anterior and posterior part, the ending of the activity of the muscles just
behind the head coincides with the beginning of activity in the caudal peduncle. The
velocity of the wave of contraction is half as fast as the velocity of the wave of cur-
vature. Grillner & Kashin (1976) find the wave of electric activity in the eel to be
slower than the mechanical wave of bending. Kashin, Feldman & Orlovsky (1979)
provide electromyographical evidence for a constant time lag between activation of
anterior and posterior red muscles of the carp during sustained swimming and for
simultaneous activation of homolateral segments during bursts of fast swimming. The
above myographic data support our view of the use of lateral muscles in swimming.

This work is sponsored by the Foundation for Fundamental Biological Research
(BION), which is subsidized by the Netherlands Organization for the Advancement
of Pure Research (ZWO).
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