Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?
Anthony M. Pagano, Anthony M. Carnahan, Charles T. Robbins, Megan A. Owen, Tammy Batson, Nate Wagner, Amy Cutting, Nicole Nicassio-Hiskey, Amy Hash, Terrie M. Williams
Journal of Experimental Biology 2018 221: jeb175372 doi: 10.1242/jeb.175372 Published 19 June 2018
Anthony M. Pagano
US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USADepartment of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anthony M. Pagano
  • For correspondence: apagano@usgs.gov
Anthony M. Carnahan
School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles T. Robbins
School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan A. Owen
Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tammy Batson
San Diego Zoo Global, San Diego, CA 92027, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nate Wagner
San Diego Zoo Global, San Diego, CA 92027, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amy Cutting
Oregon Zoo, Portland, OR 97221, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicole Nicassio-Hiskey
Oregon Zoo, Portland, OR 97221, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amy Hash
Oregon Zoo, Portland, OR 97221, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terrie M. Williams
Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

ABSTRACT

Ursids are the largest mammals to retain a plantigrade posture. This primitive posture has been proposed to result in reduced locomotor speed and economy relative to digitigrade and unguligrade species, particularly at high speeds. Previous energetics research on polar bears (Ursus maritimus) found locomotor costs were more than double predictions for similarly sized quadrupedal mammals, which could be a result of their plantigrade posture or due to adaptations to their Arctic marine existence. To evaluate whether polar bears are representative of terrestrial ursids or distinctly uneconomical walkers, this study measured the mass-specific metabolism, overall dynamic body acceleration, and gait kinematics of polar bears and grizzly bears (Ursus arctos) trained to rest and walk on a treadmill. At routine walking speeds, we found polar bears and grizzly bears exhibited similar costs of locomotion and gait kinematics, but differing measures of overall dynamic body acceleration. Minimum cost of transport while walking in the two species (2.21 J kg−1 m−1) was comparable to predictions for similarly sized quadrupedal mammals, but these costs doubled (4.42 J kg−1 m−1) at speeds ≥5.4 km h−1. Similar to humans, another large plantigrade mammal, bears appear to exhibit a greater economy while moving at slow speeds.

FOOTNOTES

  • Competing interests

    The authors declare no competing or financial interests.

  • Author contributions

    Conceptualization: A.M.P., T.M.W.; Methodology: A.M.P., T.M.W.; Formal analysis: A.M.P.; Investigation: A.M.P., C.T.R., T.M.W.; Data curation: A.M.P., A.M.C., C.T.R., T.B., N.W., N.N., A.H., T.M.W.; Writing - original draft: A.M.P.; Writing - review & editing: A.M.P., A.M.C., C.T.R., M.A.O., T.M.W.; Supervision: C.T.R., M.A.O., A.C., T.M.W.; Project administration: C.T.R., M.A.O., T.M.W.; Funding acquisition: A.M.P., C.T.R., M.A.O., A.C., T.M.W.

  • Funding

    Support was provided by the U.S. Geological Survey’s Changing Arctic Ecosystems Initiative, Polar Bears International, the North Pacific Research Board, Interagency Grizzly Bear Committee, fRI Research, the Raili Korkka Brown Bear Endowment, the Bear Research and Conservation Endowment, the Nutritional Ecology Endowment, Washington State University, San Diego Zoo Global, Oregon Zoo, SeaWorld and Busch Gardens Conservation Fund, University of California, Santa Cruz, and the International Association for Bear Research and Management. Funding was also provided by National Science Foundation DBI 1255913-015 (to T.M.W.).

  • Data availability

    Data reported in this paper are archived in the USGS Science Data Catalog: https://doi.org/10.5066/F7QR4W91 and https://doi.org/10.5066/F7XW4H0P.

  • Supplementary information

    Supplementary information available online at http://jeb.biologists.org/lookup/doi/10.1242/jeb.175372.supplemental

  • Received December 2, 2017.
  • Accepted April 21, 2018.
  • © 2018. Published by The Company of Biologists Ltd
http://www.biologists.com/user-licence-1-1/
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$30.00 .

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Acceleration
  • Cost of transport
  • Metabolism
  • Overall dynamic body acceleration
  • Ursus arctos
  • Ursus maritimus

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
Research Article
Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?
Anthony M. Pagano, Anthony M. Carnahan, Charles T. Robbins, Megan A. Owen, Tammy Batson, Nate Wagner, Amy Cutting, Nicole Nicassio-Hiskey, Amy Hash, Terrie M. Williams
Journal of Experimental Biology 2018 221: jeb175372 doi: 10.1242/jeb.175372 Published 19 June 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?
Anthony M. Pagano, Anthony M. Carnahan, Charles T. Robbins, Megan A. Owen, Tammy Batson, Nate Wagner, Amy Cutting, Nicole Nicassio-Hiskey, Amy Hash, Terrie M. Williams
Journal of Experimental Biology 2018 221: jeb175372 doi: 10.1242/jeb.175372 Published 19 June 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Acknowledgements
    • FOOTNOTES
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus
  • Identification of the role of Rh protein in ammonia excretion of swimming crab Portunus trituberculatus
  • Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian
Show more RESEARCH ARTICLE

Similar articles

Subject collections

  • Comparative biomechanics of movement

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Editors’ choice – Accurate archerfish calculate fly height in an instant

Our most recent Editors’ choice is a pair of articles that examine rapid depth perception in hunting archerfish from Caroline P. Reinel and Stefan Schuster (I. The predictive C-starts, II. An analysis of potential cues). Archerfish have an impressive ability to predict where the prey that they topple from perches will land and now it turns out that they are able to calculate the height that a victim will fall in the first 100 ms of the descent.


Featured article – Dragonfly haemolymph looks more like ancestors’

Animals that live in the air have high levels of CO2 in their bodies, while aquatic species have lower CO2 levels, but what about the internal CO2 levels of animals that evolved in air but returned to the water for part of their lives? Philip Matthews and colleagues have discovered that the CO2 in the haemolymph of aquatic dragonfly nymphs is high, like that of air breathers, even though they live in water.


Conversation – Erika Eliason

“So much of science is about things going wrong, failing epically, and I think you have to be able to pick yourself up and figure out what went wrong.”

Erika Eliason is an Assistant Professor at University of California, Santa Barbara, USA, where she studies ecological and evolutionary physiology. She shares how a childhood spent discovering the natural world in the woods where she grew up ignited her love for science and fieldwork, why conferences should be more family-friendly and the importance of being prepared for the unexpected.


Commentary – Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance

Exposure to low temperature often results in death or injury for insects. However, repeated brief warm pulses during periods of low-temperature stress have been shown to confer some protection. Kendra J. Greenlee and colleagues provide an overview of the critical elements that underpin this phenomenon.


Meet the team

Are you going to the 2018 APS Comparative Physiology meeting in October? This meeting is supported by JEB and our Reviews Editor Charlotte Rutledge will be there - stop by and say hello! Advance registration is open until 24 September 2018.


preLights – Are Robofish accepted as a guppy conspecific?

Rasmus Ern highlights a preprint in which Jens Krause and colleagues use a magnet-controlled, 3D-printed fish replica to study social responsiveness in guppies.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2018   The Company of Biologists Ltd   Registered Charity 277992