Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
INSIDE JEB
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920
Kathryn Knight
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Parasitoid wasp ovipositing on a fig. Photo credit: Lakshminath Kundanati.

Female insects have one goal in life: to find the best place to lay their eggs. For fig wasps, that is the developing fruit of the luscious fig plant. However, when the females of one particular species of parasitic fig wasp (Apocryta westwoodi grandi) descends onto a recently fertilised fruit, she has to bore her way through the tough unripe fig to find the larvae of other insects that are already developing within, which she will parasitize to give her own eggs the best start. Fortunately, the insect's immensely long (7–8 mm) and slender (15 μm) ovipositor – which injects eggs into the fig – is equipped with a sharp tip, ready to bore through the woody fruit. Namrata Gundiah from the Indian Institute of Science, Bangalore, was intrigued by the differences between the egg delivery systems of the boring parasitoid wasps and the wasps that pollinate the fig's flowers. ‘Our first question was why don't we look at the different adaptations that these two species undergo?’ says Gundiah (p. 1946).

Teaming up with graduate student Laksminath Kundanati, Gundiah used scanning electron microscopy to take a high resolution look at the tips of the insects' ovipositors and was amazed to see that the end of the boring wasp's ovipositor looked like a drill bit, complete with teeth to bore through the woody fruit. In contrast, the tip of the pollinator wasp's ovipositor closely resembled a spoon-like structure. And when they looked along the length of the borer's ovipositor, Kundanati and Gundiah noticed tiny pits in the shaft, roughly in the location where the structure bends as the female drives the tip into the fruit, to allow the ovipositor to flex without breaking. Gundiah could also clearly see sensory structures at the tip that could help guide the ovipositor to the best locations for the wasp to lay her eggs.

Next, the duo investigated the material from which the drill bit was made. ‘We asked what could enhance the hardness of the structures’, recalls Gundiah. Focusing a beam of electrons on the minute tip, Kundanati and Gundiah recorded the X-ray spectrum emitted by the material and discovered that the tooth structures were enriched with zinc. ‘Zinc mainly increases the hardness, which will affect the wear resistance of the drill bits’, explains Gundiah.

Kundanati and Gundiah then prodded the minute drill bit with an atomic force microscope (AFM) probe to indent it to find out how hard the zinc-enriched teeth were. Gundiah admits that pinpointing the tiny teeth on the miniscule curved structure was particularly challenging: ‘Usually, AFM is done on relatively large surfaces and so it doesn't matter where you go and indent the material’, chuckles Gundiah. But eventually the duo recorded the hardness of the teeth at 0.5 GPa: ‘That is almost as hard as the acrylic cement used for dental implants’, says Gundiah.

Finally, knowing that the females impale unripe figs with their ovipositors many times during the course of their lives, Gundiah decided to measure the buckling forces exerted on the slender structure as the female drives the ovipositor in. Kundanati filmed the tiny wasps on fig trees around the institute campus by attaching a microscope objective to a video camera. He clearly saw the slender structure bend and flex as the insect drove it in and calculated that the 15 μm diameter structure can tolerate buckling forces of almost 7 μN.

Having characterised the fig wasp's drill bit, Gundiah is keen to design a minute boring tool based on the lessons that she has learned from the insects.

  • © 2014. Published by The Company of Biologists Ltd

References

    1. Kundanati, L. and
    2. Gundiah, N.
    (2014). Biomechanics of substrate boring by fig wasps. J. Exp. Biol. 217, 1946-1954.
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Parasitic fig wasps bore with zinc-tipped drill bit
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
INSIDE JEB
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
INSIDE JEB
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Hunting great white sharks could motor but prefer to mosey
  • Skate eyes adapt subtly to see but not be seen
  • Spittlebugs snorkel in cuckoo spit
Show more INSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Featured article – Colour blindness test gets submerged

Cartoon fish having Ishihara's colour vision test

John Endler and team have come up with a new way to test animal colour vision based on methods to determine whether humans are ‘colour blind’, and they demonstrate how this method works with triggerfish.


Editorial - Thanking our peer reviewers in 2018

Thank you to our peer reviewers

We value the time and expertise of our reviewers and would like to publicly thank all those who have contributed to our peer review process in the past year.


Editors' choice - Global dynamics of bipedal macaques during grounded and aerial running

Macaque 'walking'

Trained macaques that can walk on two legs never seemed to run, but Naomichi Ogihara and team show that they run all the time, although their legs are too springy for them to get off the ground, and they can take off like runners when moving at top speed.


Conversation - Early-career researchers: an interview with Danielle Levesque

Danielle Levesque, Assistant Professor at the University of Maine

Danielle Levesque is an Assistant Professor at the University of Maine, USA, where she studies hibernation and torpor in mammals. She told us how her research has taken her to Madagascar and Borneo, and why she thinks it is important to learn coding.

Read more of our interviews with early-career researchers on our Interviews page.


Journal news - Journal of Experimental Biology Outstanding Paper Prize 2018

Outstanding Paper Prize winners Till Harter, Mike Sackville and Dave Metzinger

Prize winners Till Harter, Mike Sackville and Dave Metzinger

We are delighted to announce the shortlist of papers nominated by the journal Editors for the 2018 award. Featuring topics as wide-ranging as the development of oxygen transport in snapping turtle embryos, the factors that cause cold flies to fall into a coma and the visual features that influence flying hoverflies, the shortlist celebrates the journal's diversity. Special congratulations go to Colin Brauner's team at the University of British Columbia, winner of this year's Outstanding Paper Prize.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992