Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Current issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Current issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Inside JEB
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920
Kathryn Knight
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading
Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Parasitoid wasp ovipositing on a fig. Photo credit: Lakshminath Kundanati.

Female insects have one goal in life: to find the best place to lay their eggs. For fig wasps, that is the developing fruit of the luscious fig plant. However, when the females of one particular species of parasitic fig wasp (Apocryta westwoodi grandi) descends onto a recently fertilised fruit, she has to bore her way through the tough unripe fig to find the larvae of other insects that are already developing within, which she will parasitize to give her own eggs the best start. Fortunately, the insect's immensely long (7–8 mm) and slender (15 μm) ovipositor – which injects eggs into the fig – is equipped with a sharp tip, ready to bore through the woody fruit. Namrata Gundiah from the Indian Institute of Science, Bangalore, was intrigued by the differences between the egg delivery systems of the boring parasitoid wasps and the wasps that pollinate the fig's flowers. ‘Our first question was why don't we look at the different adaptations that these two species undergo?’ says Gundiah (p. 1946).

Teaming up with graduate student Laksminath Kundanati, Gundiah used scanning electron microscopy to take a high resolution look at the tips of the insects' ovipositors and was amazed to see that the end of the boring wasp's ovipositor looked like a drill bit, complete with teeth to bore through the woody fruit. In contrast, the tip of the pollinator wasp's ovipositor closely resembled a spoon-like structure. And when they looked along the length of the borer's ovipositor, Kundanati and Gundiah noticed tiny pits in the shaft, roughly in the location where the structure bends as the female drives the tip into the fruit, to allow the ovipositor to flex without breaking. Gundiah could also clearly see sensory structures at the tip that could help guide the ovipositor to the best locations for the wasp to lay her eggs.

Next, the duo investigated the material from which the drill bit was made. ‘We asked what could enhance the hardness of the structures’, recalls Gundiah. Focusing a beam of electrons on the minute tip, Kundanati and Gundiah recorded the X-ray spectrum emitted by the material and discovered that the tooth structures were enriched with zinc. ‘Zinc mainly increases the hardness, which will affect the wear resistance of the drill bits’, explains Gundiah.

Kundanati and Gundiah then prodded the minute drill bit with an atomic force microscope (AFM) probe to indent it to find out how hard the zinc-enriched teeth were. Gundiah admits that pinpointing the tiny teeth on the miniscule curved structure was particularly challenging: ‘Usually, AFM is done on relatively large surfaces and so it doesn't matter where you go and indent the material’, chuckles Gundiah. But eventually the duo recorded the hardness of the teeth at 0.5 GPa: ‘That is almost as hard as the acrylic cement used for dental implants’, says Gundiah.

Finally, knowing that the females impale unripe figs with their ovipositors many times during the course of their lives, Gundiah decided to measure the buckling forces exerted on the slender structure as the female drives the ovipositor in. Kundanati filmed the tiny wasps on fig trees around the institute campus by attaching a microscope objective to a video camera. He clearly saw the slender structure bend and flex as the insect drove it in and calculated that the 15 μm diameter structure can tolerate buckling forces of almost 7 μN.

Having characterised the fig wasp's drill bit, Gundiah is keen to design a minute boring tool based on the lessons that she has learned from the insects.

  • © 2014. Published by The Company of Biologists Ltd

References

    1. Kundanati, L. and
    2. Gundiah, N.
    (2014). Biomechanics of substrate boring by fig wasps. J. Exp. Biol. 217, 1946-1954.
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

Current Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Parasitic fig wasps bore with zinc-tipped drill bit
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920
Permalink:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Parasitic fig wasps bore with zinc-tipped drill bit
Kathryn Knight
Journal of Experimental Biology 2014 217: 1833 doi: 10.1242/jeb.107920

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • How largemouth bass pucker up to slurp
  • Harnessed ants learn the hot way
  • Locust oxygen delivery matched to souped-up muscle
Show more INSIDE JEB

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Featured article - Humpback whales don't always avoid sonar

Many organizations that use sonar for underwater exploration gradually increase the volume of the noise to avoid startling whales and dolphins, but a new Research Article from Paul Wensveen and colleagues reveals that some humpback whales do not take advantage of the gradual warning to steer clear.


JEB Classics – Xenopus and the art of oxygen maintenance

Glenn Tattersall and Warren Burggren discuss the impact of former JEB Editor-in-Chief Robert Boutilier and Graham Shelton’s classic 1986 JEB paper, 'Gas exchange, storage and transport in voluntarily diving Xenopus laevis'.


Featured article – Xenopus larvae swivel reflex depends on image contrast

Many animals stabilize their vision by swivelling their eyes to prevent the image from smearing as they move. A new Research Article on tadpoles from Céline Gravot and colleagues shows that contrast between objects in their view affects the strength of this visual reflex, suggesting that the eye may be processing the image at a basic level to produce the reflex.


Travelling Fellowships – Paying it forward

Cinnamon clownfish larva

When starting her own lab at James Cook University, Australia, Jodie Rummer applied for a Travelling Fellowship from JEB to gather data on oxygen consumption rates of coral reef fishes at the Northern Great Barrier Reef. A few years later, Björn Illing, from the Institute for Hydrobiology and Fisheries Science, Germany, followed in Jodie’s footsteps and used a JEB Travelling Fellowship to visit Jodie’s lab. There, he studied the effects of temperature on the survival of larval cinnamon clownfish. Jodie and Björn’s collaboration was so successful that they have written a collaborative paper, and Björn has now returned to continue his research as a post-doc in Jodie’s Lab. Read their story here.

Where could your research take you? Apply for a Travelling Fellowship now!

Articles

  • Accepted manuscripts
  • Current issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2018   The Company of Biologists Ltd   Registered Charity 277992