JEB desktop wallpaper calendar 2016

Journal of Experimental Biology partnership with Dryad

Flow-dependent porosity and other biomechanical properties of mysticete baleen
Alexander J. Werth


Despite its vital function in a highly dynamic environment, baleen is typically assumed to be a static material. Its biomechanical and material properties have not previously been explored. Thus I tested sections of baleen from bowhead whales, Balaena mysticetus, and humpback whales, Megaptera novaeangliae, alone or in groups representing miniature ‘racks’, in a flow tank through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were recorded through an endoscopic camera or viewing window. One set of experiments investigated particle capture; another series analyzed biomechanical behavior, including fringe spacing, movement and interaction. Baleen fringe porosity directly correlates, in a mostly linear fashion, with velocity of incident water flow. However, undulation and interaction of fringes (especially of bowheads) at higher flow velocities can decrease porosity. Fringe porosity depends on distance from the baleen plate. Porosity also varies, with fringe length, by position along the length of an individual plate. Plate orientation, which varied from 0 to 90 deg relative to water flow, is crucial in fringe spacing and particle capture. At all flow velocities, porosity is lowest with plates aligned parallel to water flow. Turbulence introduced when plates rotate perpendicular to flow (as in cross-flow filtration) increases fringe interaction, so that particles more easily strike fringes yet more readily dislodge. Baleen of bowhead whales, which feed by continuous ram filtration, differs biomechanically from that of humpbacks, which use intermittent lunge filtration. The longer, finer fringes of bowhead baleen readily form a mesh-like mat, especially at higher flow velocities, to trap tiny particles.



    Funding was provided by faculty fellowship grants from Hampden-Sydney College, and by Mednick and Harris Awards from the Virginia Foundation for Independent Colleges.


    inter-fringe distance
    flow velocity
    angle of attack (of baleen plates)
  • View Full Text