JEB desktop wallpaper calendar 2016

JEB desktop wallpaper calendar 2016

Sonar jamming in the field: effectiveness and behavior of a unique prey defense
Aaron J. Corcoran, William E. Conner


Bats and insects provide a model system for integrating our understanding of predator–prey ecology, animal behavior and neurophysiology. Previous field studies of bat–insect interactions have been limited by the technological challenges involved with studying nocturnal, volant animals that use ultrasound and engage in battles that frequently last a fraction of a second. We overcame these challenges using a robust field methodology that included multiple infrared cameras calibrated for three-dimensional reconstruction of bat and moth flight trajectories and four ultrasonic microphones that provided a spatial component to audio recordings. Our objectives were to document bat–moth interactions in a natural setting and to test the effectiveness of a unique prey defense – sonar jamming. We tested the effect of sonar jamming by comparing the results of interactions between bats and Grote’s tiger moth, Bertholdia trigona, with their sound-producing organs either intact or ablated. Jamming was highly effective, with bats capturing more than 10 times as many silenced moths as clicking moths. Moths frequently combined their acoustic defense with two separate evasive maneuvers: flying away from the bat and diving. Diving decreased bat capture success for both clicking and silenced moths, while flying away did not. The diving showed a strong directional component, a first for insect defensive maneuvers. We discuss the timing of B. trigona defensive maneuvers – which differs from that of other moths – in the context of moth auditory neuroethology. Studying bat–insect interactions in their natural environment provides valuable information that complements work conducted in more controlled settings.



    angular difference between the bat–moth vector and the moth flight vector
    angular difference between the bat–moth vector and the bat flight vector
  • View Full Text