JEB desktop wallpaper calendar 2016

Journal of Experimental Biology partnership with Dryad

Acclimatization of seasonal energetics in northern cardinals (Cardinalis cardinalis) through plasticity of metabolic rates and ceilings
Carrie Sgueo, Marion E. Wells, David E. Russell, Paul J. Schaeffer


Northern cardinals (Cardinalis cardinalis) are faced with energetically expensive seasonal challenges that must be met to ensure survival, including thermoregulation in winter and reproductive activities in summer. Contrary to predictions of life history theory that suggest breeding metabolic rate should be the apex of energetic effort, winter metabolism exceeds that during breeding in several temperate resident bird species. By examining whole-animal, tissue and cellular function, we ask whether seasonal acclimatization is accomplished by coordinated phenotypic plasticity of metabolic systems. We measured summit metabolism (O2,sum), daily energy expenditure (DEE) and muscle oxidative capacity under both winter (December to January) and breeding (May to June) conditions. We hypothesize that: (1) rates of energy utilization will be highest in the winter, contrary to predictions based on life history theory, and (2) acclimatization of metabolism will occur at multiple levels of organization such that birds operate with a similar metabolic ceiling during different seasons. We measured field metabolic rates using heart rate telemetry and report the first daily patterns in avian field metabolic rate. Patterns of daily energy use differed seasonally, primarily as birds maintain high metabolic rates throughout the winter daylight hours. We found that DEE and O2,sum were significantly greater and DEE occurred at a higher fraction of maximum metabolic capacity during winter, indicating an elevation of the metabolic ceiling. Surprisingly, there were no significant differences in mass or oxidative capacity of skeletal muscle. These data, highlighting the importance of examining energetic responses to seasonal challenges at multiple levels, clearly reject life history predictions that breeding is the primary energetic challenge for temperate zone residents. Further, they indicate that metabolic ceilings are seasonally flexible as metabolic effort during winter thermoregulation exceeds that of breeding.


View Full Text