Welcome to our new website

Distinct startle responses are associated with neuroanatomical differences in pufferfishes
A. K. Greenwood, C. L. Peichel, S. J. Zottoli


Despite the key function of the Mauthner cells (M-cells) in initiating escape responses and thereby promoting survival, there are multiple examples of M-cell loss across the teleost phylogeny. Only a few studies have directly considered the behavioral consequences of naturally occurring M-cell variation across species. We chose to examine this issue in pufferfishes, as previous research suggested that there might be variability in M-cell anatomy in this group of fish. We characterized the M-cell anatomy and fast-start responses of two pufferfish species, Tetraodon nigroviridis and Diodon holocanthus. T. nigroviridis showed robust fast-starts to both tactile and acoustic startling stimuli. These fast-starts occurred with a latency typical of M-cell initiation in other fish, and retrograde labeling of spinal-projection neurons revealed that T. nigroviridis does have M-cells. By contrast, D. holocanthus only rarely exhibited fast-start-like behavior, and these responses were at a substantially longer latency and were much less extensive than those of T. nigroviridis. Using three complementary anatomical techniques we were unable to identify obvious M-cell candidates in D. holocanthus. These results provide a clear correlation between M-cell presence or absence and dramatic differences in fast-start behavior. The rich diversity within the pufferfish clade should allow future studies investigating the factors that contribute to this correlated anatomical and behavioral variation.

View Full Text