Welcome to our new website

Effects of cocaine on honey bee dance behaviour
Andrew B. Barron, Ryszard Maleszka, Paul G. Helliwell, Gene E. Robinson


The role of cocaine as an addictive drug of abuse in human society is hard to reconcile with its ecological role as a natural insecticide and plant-protective compound, preventing herbivory of coca plants (Erythroxylum spp.). This paradox is often explained by proposing a fundamental difference in mammalian and invertebrate responses to cocaine, but here we show effects of cocaine on honey bees (Apis mellifera L.) that parallel human responses. Forager honey bees perform symbolic dances to advertise the location and value of floral resources to their nest mates. Treatment with a low dose of cocaine increased the likelihood and rate of bees dancing after foraging but did not otherwise increase locomotor activity. This is consistent with cocaine causing forager bees to overestimate the value of the floral resources they collected. Further, cessation of chronic cocaine treatment caused a withdrawal-like response. These similarities likely occur because in both insects and mammals the biogenic amine neuromodulator systems disrupted by cocaine perform similar roles as modulators of reward and motor systems. Given these analogous responses to cocaine in insects and mammals, we propose an alternative solution to the paradox of cocaine reinforcement. Ecologically, cocaine is an effective plant defence compound via disruption of herbivore motor control but, because the neurochemical systems targeted by cocaine also modulate reward processing, the reinforcing properties of cocaine occur as a `side effect'.


  • We thank Luke Roberts and Marianne Peso for assistance with locomotor assays, and members of the Robinson lab for comments and feedback on the manuscript. This work was supported by a National Institutes of Health Cutting Edge Biological Research Award DA-019864 to G.E.R. Deposited in PMC for release after 12 months.

View Full Text