Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
The adhesive delivery system of viscous capture threads spun by orb-weaving spiders
Brent D. Opell, Mary L. Hendricks
Journal of Experimental Biology 2009 212: 3026-3034; doi: 10.1242/jeb.030064
Brent D. Opell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary L. Hendricks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

SUMMARY

The sticky viscous capture threads in araneoid orb-webs are responsible for retaining insects that strike these webs. We used features of 16 species' threads and the stickiness that they expressed on contact plates of four widths to model their adhesive delivery systems. Our results confirm that droplets at the edges of thread contact contribute the greatest adhesion, with each successively interior droplet contributing only 0.70 as much adhesion. Thus, regardless of the size and spacing of a thread's large primary droplets, little adhesion accrues beyond a span of 20 droplets. From this pattern we computed effective droplet number (EDN), an index that describes the total droplet equivalents that contribute to the stickiness of thread spans. EDN makes the greatest positive contribution to thread stickiness, followed by an index of the shape and size of primary droplets, and the volume of small secondary droplets. The proportion of water in droplets makes the single greatest negative contribution to thread stickiness, followed by a thread's extensibility, and the area of flattened droplets. Although highly significant, this six-variable model failed to convincingly describe the stickiness of six species, a problem resolved when species were assigned to three groups and a separate model was constructed for each. These models place different weights on the variables and, in some cases, reverse or exclude the contribution of a variable. Differences in threads may adapt them to particular habitats, web architectures or prey types, or they may be shaped by a species' phylogeny or metabolic capabilities.

  • adhesive system
  • capture thread
  • orb-web
  • prey capture
  • viscous thread

FOOTNOTES

  • During this 3 year study Andrea Burger, Brian Segal, Mike Leonard, Lindsay Neist, Harry Schwend, Brian Markley, Chip Hannum, Genine Lipkey, Kaitlin Flora and Steve Vito helped collect, photograph and measure threads. National Science Foundation grant IOB-0445137 supported this research.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The adhesive delivery system of viscous capture threads spun by orb-weaving spiders
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
The adhesive delivery system of viscous capture threads spun by orb-weaving spiders
Brent D. Opell, Mary L. Hendricks
Journal of Experimental Biology 2009 212: 3026-3034; doi: 10.1242/jeb.030064
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The adhesive delivery system of viscous capture threads spun by orb-weaving spiders
Brent D. Opell, Mary L. Hendricks
Journal of Experimental Biology 2009 212: 3026-3034; doi: 10.1242/jeb.030064

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • FOOTNOTES
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Thermal strategies vary with life history stage
  • Microsurgical manipulation reveals pre-copulatory function of key genital sclerites
  • Are the surface areas of the gills and body involved with changing metabolic scaling with temperature?
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Editors’ choice – Breath-holding locusts don't keep spiracles open when they exhale


Photo credit: Stav Talal.
Diapausing butterfly larvae keep their spiracles open while exhaling during discontinuous gas exchange; however, a recent study from Stav Talal and co-workers reveals that adult locusts do not. Instead they repeatedly open and close their spiracles in time with contractions of the abdominal muscle to expel air from the body.


JEB in the news – Sheep hair curl secret in cells


Photo credit: Anita Grosvenor.
Why does hair curl? By looking at curly merino sheep wool, scientists from New Zealand and Japan have discovered that the hair cells lining the outside of the curl are long (orthocortical cells) while the cells on the inside of the curl are another type (paracortical cells), which are short, making the hair bend to give it a curl. This JEB Research Article was reported in the New York Times and ABC news.


Commentary – Robotics-inspired biology

Robotic devices are increasingly generating ideas for experiments on living animals. Nick Gravish and George V. Lauder explore this new twist on the inspiration that biologists have traditionally taken from mechanical systems.


JEB symposium 2017 – The biology of fat

Delegates at the 2017 Journal of Experimental Biology symposium ‘The biology of fat’ share their experiences and highlights of the meeting. We have also recently published a special issue featuring review articles based on the talks at this meeting.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2018   The Company of Biologists Ltd   Registered Charity 277992