Welcome to our new website

Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch
Emily Megan Plummer, Franz Goller


Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.

View Full Text