Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Journal of Experimental Biology
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Experimental Biology

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Alerts
  • About us
    • About JEB
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Workshops and Meetings
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Alerts
  • Contacts
    • Contact JEB
    • Subscriptions
    • Advertising
    • Feedback
Research Article
A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi
John J. Socha, Tony O'Dempsey, Michael LaBarbera
Journal of Experimental Biology 2005 208: 1817-1833; doi: 10.1242/jeb.01579
John J. Socha
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tony O'Dempsey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael LaBarbera
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

SUMMARY

Flying snake species (Chrysopelea) locomote through the air despite a lack of appendages or any obvious external morphological specialization for flight. Here photogrammetric techniques were used to investigate C. paradisi's aerial trajectory in three dimensions. Two videocameras arranged in stereo were used to record head, midpoint and vent landmarks on snakes that jumped from a horizontal branch at a height of 9.62 m and landed in an open field. The coordinates of these landmarks were reconstructed in three dimensions and used to analyze patterns of position, glide angle and speed concurrently with changes in body posture in 14 glide sequences from different individuals. C. paradisi's trajectory was composed of a ballistic dive followed by a shallowing phase in which the path became more horizontal; for most glide trials, no equilibrium phase was observed. In the ballistic dive, the snake changed posture from generally straight to a wide `S' shape in planview and began aerial undulation. Shortly after the ballistic dive, the snake's speed transitioned from an initial acceleration to stable or to a different rate of increase or decrease. Aerial undulation, in which high-amplitude traveling waves pass posteriorly down the body, was a prominent locomotor behavior. In mid-glide, this undulation occurred with the anterior body oriented approximately parallel with the ground and the posterior body cycling up and down in the vertical plane. The body angle of attack for the anterior body for one trial was 20-40°. Snakes traveled a horizontal distance of 10.14±2.69 m (mean ± s.d.) while reaching an airspeed of 10.0±0.9 m s-1, sinking speed of 6.4±0.8 m s-1 and horizontal speed of 8.1±0.9 m s-1. The glide path shallowed at a rate of 20±6° s-1 and reached a minimum glide angle of 28±10°, with a minimum recorded glide angle of 13°. C. paradisi are surprisingly good gliders given their unconventional locomotor style, with performance characteristics that rival or surpass more familiar gliding taxa such as flying squirrels. As in other gliders, C. paradisi is potentially capable of using aerial locomotion to move effectively between trees, chase aerial prey, or avoid predators.

  • snake
  • gliding
  • flight
  • locomotion
  • performance
  • kinematics
  • Chrysopelea paradisi
  • © The Company of Biologists Limited 2005
View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Experimental Biology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi
(Your Name) has sent you a message from Journal of Experimental Biology
(Your Name) thought you would like to see the Journal of Experimental Biology web site.
Share
A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi
John J. Socha, Tony O'Dempsey, Michael LaBarbera
Journal of Experimental Biology 2005 208: 1817-1833; doi: 10.1242/jeb.01579
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi
John J. Socha, Tony O'Dempsey, Michael LaBarbera
Journal of Experimental Biology 2005 208: 1817-1833; doi: 10.1242/jeb.01579

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • ACKNOWLEDGEMENTS
    • FOOTNOTES
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status
  • The consequences of seasonal fasting during the dormancy of tegu lizards (Salvator merianae) on their postprandial metabolic response
  • Hand pressures during arboreal locomotion in captive bonobos (Pan paniscus)
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Disease Models & Mechanisms

Biology Open

Advertisement

Editors’ choice – Breath-holding locusts don't keep spiracles open when they exhale


Photo credit: Stav Talal.
Diapausing butterfly larvae keep their spiracles open while exhaling during discontinuous gas exchange; however, a recent study from Stav Talal and co-workers reveals that adult locusts do not. Instead they repeatedly open and close their spiracles in time with contractions of the abdominal muscle to expel air from the body.


JEB in the news – Sheep hair curl secret in cells


Photo credit: Anita Grosvenor.
Why does hair curl? By looking at curly merino sheep wool, scientists from New Zealand and Japan have discovered that the hair cells lining the outside of the curl are long (orthocortical cells) while the cells on the inside of the curl are another type (paracortical cells), which are short, making the hair bend to give it a curl. This JEB Research Article was reported in the New York Times and ABC news.


Commentary – Robotics-inspired biology

Robotic devices are increasingly generating ideas for experiments on living animals. Nick Gravish and George V. Lauder explore this new twist on the inspiration that biologists have traditionally taken from mechanical systems.


JEB symposium 2017 – The biology of fat

Delegates at the 2017 Journal of Experimental Biology symposium ‘The biology of fat’ share their experiences and highlights of the meeting. We have also recently published a special issue featuring review articles based on the talks at this meeting.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Alerts

About us

  • About JEB
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Workshops and Meetings
  • The Company of Biologists
  • Journal news

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Outstanding paper prize
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Alerts

Contact

  • Contact JEB
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2018   The Company of Biologists Ltd   Registered Charity 277992