JEB desktop wallpaper calendar 2016

JEB desktop wallpaper calendar 2016

Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons
K. Xu, S. Terakawa

Summary

Saltatory impulse conduction in invertebrates is rare and has only been found in a few giant nerve fibres, such as the pairs of medial giant fibres with a compact multilayered myelin sheath found in shrimps (Penaeus chinensis and Penaeus japonicus) and the median giant fibre with a loose multilayered myelin sheath found in the earthworm Lumbricus terrestris. Small regions of these nerve fibres are not covered by a myelin sheath and serve as functional nodes for saltatory conduction. Remarkably, shrimp giant nerve fibres have conduction speeds of more than 200 m s-1, making them among the fastest-conducting fibres recorded, even when compared with vertebrate myelinated fibres. A common nodal structure for saltatory conduction has recently been found in the myelinated nerve fibres of the nervous systems of at least six species of Penaeus shrimp, including P. chinensis and P. japonicus. This novel node consists of fenestrated openings that are regularly spaced in the myelin sheath and are designated as fenestration nodes. The myelinated nerve fibres of the Penaeus shrimp also speed impulse conduction by broadening the gap between the axon and the myelin sheath rather than by enlarging the axon diameter as in other invertebrates. In this review, we document and discuss some of the structural and functional characteristics of the myelinated nerve fibres of Penaeus shrimp: (1) the fenestration node, which enables saltatory conduction, (2) a new type of compact multilayered myelin sheath, (3) the unique microtubular sheath that tightly surrounds the axon, (4) the extraordinarily wide space present between the microtubular sheath and the myelin sheath and (5) the main factors contributing to the fastest impulse conduction velocity so far recorded in the Animal Kingdom.